Memory Effect and BMS-like Symmetries for Impulsive Gravitational Waves

Abstract

We study horizon shells and soldering freedom for extreme black holes and how supertranslation-like Bondi-Metzner-Sachs (BMS) symmetries appear as soldering transformations. Further, for a null shell placed infinitesimally close to the horizon of an extreme Reissner–Nordström (RN) black hole, we show superrotation-like symmetries also arise as soldering freedom. Next, considering the interaction of impulsive gravitational waves supported at the horizon shell with test particles, we study how the “memory” (or the imprints) of BMS-like symmetries gets encoded in the geodesics (test particles) crossing the shell. Our study shows, timelike test particles get displaced from their initial plane when they cross the horizon shell. For a null geodesic congruence crossing the horizon shell, the optical tensors corresponding to the congruence suffer jumps. In both cases, the changes are induced by BMS parameters that constitute the gravity wave and matter degrees of freedom of the shell.

Publication
In Physical Review D
Click the Cite button above to demo the feature to enable visitors to import publication metadata into their reference management software.
Shailesh Kumar
Shailesh Kumar
Postdoctoral Fellow

I am currently working as a Post-Docotral Fellow (N-PDF) at the Indian Institute of Technology, Gandhinagar, India. My research interest encompasses various aspects of gravitation theory, broadly black holes and gravitational waves. I am currently working on projects related to black hole perturbation techniques, extreme mass-ratio inspirals (EMRIs), tidal effects and post-Newtonian framework. My work during the PhD provides an understanding of the gravitational memory effect emerging near the horizon of black holes and its connection with asymptotic symmetries. I am also exploring the possibilities to have observational signatures of such symmetries.